ARMY RESEARCH LABORATORY

Procedure for Substrate
Temperature Control Using the
Pyrometer During MBE Growth

Stefan Svensson

ARL-MR-491 October 2000

Approved for public release; distribution unlimited.

re— 20001106 003

The findings in this report are not to be construed as an
official Department of the Army position unless so
designated by other authorized documents.

Citation of manufacturer’s or trade names does not
constitute an official endorsement or approval of the use
thereof.

Destroy this report when it is no longer needed. Do not
return it to the originator.

Army Research Laboratory

Adelphi, MD 20783-1197

ARL-MR-491 October 2000

Procedure for Substrate
Temperature Control Using the
Pyrometer During MBE
Growth

Stefan Svensson

Sensors and Electron Devices Directorate

_ Approved for public release; distribution unlimited.

Abstract

ii

Command procedures have been developed for the Army Research
Laboratory molecular beam epitaxy (MBE) computer control system
that allow a user to automatically outgas and desorb the oxide from
substrates before growth, as well as set substrate temperatures
based on pyrometer readings during growths. These procedures allow
completely unattended growth of structures once suitable
temperatures have been determined.

Contents

Background 1
Script for Outgassing 1
Script for Temperature Control During Growth 2
Starting the Scripts ' 2
Final Comments 5
Acknowledgment 5
Appendix. Command File Listings 7
Distribution 23
Report Documentation Page 25

Figure

1. Temperature as a function of time during growth of two consecutive
PHEMT Wafersccoooviiiiiiiiiiiiiiinii e 4

ii

Background

The Army Research Laboratory molecular beam epitaxy (MBE) system is
controlled by a PC-based system that uses the “Molly” software package
supplied by EPIL The Molly system provides a script language that can be
used to create command procedures that execute customized sequences of
actions on the MBE system. Allowed actions are reading and setting cell
temperatures, opening and closing shutters, reading pressure gauges, set-
ting the azimuthal rotation speed of the substrate, and turning the substrate
holder to the growth and load positions.

Before deposition of material is started, the native oxide on the substrate
must be desorbed. This is done by heating the substrate to a predetermined
temperature under As overpressure. Due to differences in emissivity of the
various substrate holders because of design, size, and age, a specific ther-
mocouple setting cannot be expected to produce the desired temperature
with enough precision. Hence, small corrections to the set points must be
applied, based on reading of the optical pyrometer.

Many device structures consisting of various material combinations may
require different substrate temperatures during the growth sequence. For
the reasons mentioned above, it is not possible to preprogram a tempera-
ture profile for the thermocouple since it may not result in the desired tem-
peratures as read by the pyrometer. An operator must therefore be present
to make the final temperature adjustments. Automation of these adjustments
leads to time savings and, in some cases, greater precision and reproduc-
ibility.

Script for Outgassing

The logic behind the script developed for substrate outgassing is as fol-
lows: The substrate temperature is first raised to a thermocouple set point,
at and above which the pyrometer operates (440 °C). Below this tempera-
ture the bandgap of GaAs is large enough that the substrate is transparent,
which results in a very high pyrometer reading since the pyrometer “sees”
the heater elements behind the wafer. After the minimum operation tem-
perature has been reached, the computer starts reading values from the py-
rometer. (The critical temperature is considered reached when the pyrom-
eter reading exceeds 450 °C and the time derivative of the temperature is
positive.) The pyrometer can be read from either the analog or digital out-
puts of the instruments. The digital output is greatly preferred due to the

much lower noise level on the signal. (The analog output was used origi-
nally because of a malfunction with the digital output port and produced a
signal that required heavy averaging and thus more script code.)

The ramp between the minimum operating temperature of the pyrometer
and the final outgassing temperature is approximated with a 10-step stair-
case during which a PID-control (proportional integration and differential)
routine drives the pyrometer temperature to each set point. When the final
outgassing temperature is reached, it is held constant with software PID
control for a specific time, typically 10 min. After this, the temperature is
ramped down to a desired growth temperature with the same control algo-
rithm. The outgassing script has now finished and a growth script can be
started. The code for the outgassing sequence is called Genoutg.cmd and
can be used for both GaAs and InP substrates. A parameter flag must be set
to provide information about which substrate is used. The control code for
the outgassing script is shown in in the appendix (Command File Listings).

Script for Temperature Control During Growth

By running the script Tsub.cmd in parallel with the structure recipe during
growth, one can change the substrate temperature, as read by the pyrom-
eter, from the structure recipe. Again, PID software control is used. The tem-
perature set point is stored in a global variable (see next section), which is
read every 5 s by Tsub.cmd and can be changed in the recipe by loading of
command files named TsubXXX.cmd, where XXX is the temperature. Al-
lowed values are 450 °C < XXX < 700 °C in 5° increments.

Starting the Scripts

The appendix shows an example of a structure recipe for a PHEMT
(pseudomophic high-electron-mobility transistor), which will be used to
illustrate the start of the scripts. All command procedures are invoked with
the Molly command load. A few comments about this command are appro-
priate at this point. The Molly language also includes a command nsh, which
can “launch” another command procedure. The difference between load-
ing and launching is that a loaded command file must execute to comple-
tion before the next step in the calling (loading) file can continue. A launch,
on the other hand, starts the new command file and immediately continues
with the next step. In other words, the calling and the called procedure will
run in parallel. For unknown reasons, the Molly spreadsheet accepts only

the load command and not nsh. Incidentally, the new EPICAD program al-
lows both load and nsh.

The first command file, Stdlogl.cmd (see appendix), starts a data logger.
This is a personal preference of mine and is not needed for the pyrometer
control. The same is true for the next command, Rot5.cmd, which sets the
rotation speed. Next, the outgassing procedure, Genoutg.cmd, follows. This
should run to completion before the growth begins and is therefore started
directly with a load.

Since we clearly want to allow the temperature controller and the following
structure recipe file to run in parallel, we must load an additional interme-
diate file, Pyroc.cmd (see appendix), which contains only the nsh command
that launches the desired file (Tsub.cmd) (see appendix). This is done im-
mediately after the outgassing.

The temperature set point, which is used in the PID control, is the same as
the last temperature in Genoutg.cmd. This temperature is stored in the glo-
bal variable Tsub_new, which is declared in the file C:\molly\lib\local.cmd,
a command file that is executed automatically when the Molly system is
started. One can make subsequent changes to the substrate temperature by
loading files called TsubXXX.cmd, where XXX is the temperature (see ap-
pendix). Allowed values are 450 °C < XXX < 700 °C in 5° increments. These
command files only set the global variable to a new value, so their execu-
tion time is negligible. If a different temperature is desired, any of the exist-
ing files can be copied and renamed to the new temperature and the set
point edited. (Temperatures below 450 °C should not be used for the obvi-
ous reason that the pyrometer does not work in that range.) In the PHEMT
recipe, loading Tsub500.cmd lowers the temperature from 600 °C, which is
the temperature at the finish of the outgassing, to 500 °C just before the
InGaAs layer is started.

Before the InGaAs growth starts, another GaAs layer is inserted after the
Tsub500.cmd. This illustrates an important limitation of the PID routine. If
the temperature change is too large, an abrupt change in set point may re-
sult in a substantial under- or overshoot. An undershoot can be particularly
problematic since it may drive the substrate temperature below the operat-
ing range of the pyrometer. To avoid this, the Tsub.cmd file always applies
a ramp with a rate of 40°/min. Hence, in the PHEMT example, the new set
point, which is 100 °C below the previous one, will not be reached until
150 s after Tsub500.cmd is loaded, requiring the extra GaAs layer (180 s is
used in the recipe for extra margin).

When the recipe has finished, the Tsub.cmd should be terminated. This is
done by loading Kill_pyr.cmd (appendix). The latter executes the command
kill(pyro_id, SIGKILL) in which pyro_id is another global variable defined in
C:\molly\lib\local.cmd. Similarly, the logging is stopped with the file
Kill_log.cmd (appendix). The files Rot0.cmd and Posl.cmd turn off the
azimuthal rotation and turn the substrate to the loading position. (Note

3

Figure 1. Temperature
as a function of time
during growth of two
consecutive PHEMT
wafers. Solid trace
represents thermo-
couple data and
dotted trace represents
pyrometer
temperature.

that the pyrometer control definitely must be turned off before the substrate

is turned in another direction.)

Figure 1 shows the results of two consecutive growths (run numbers 1281
and 1282) with the automated outgassing and the change of substrate tem-
perature during deposition. Despite the fact that two different types of sub-
strate holders (EPI UNI-Block and Varian nonbonded) were used, the py-
rometer traces are virtually identical beyond the outgassing phase.

Sample A1281

800 —
700
600

500

400

300

Temperature (°C)

200

couple
ramp

100 |

ramp

| Search
for
pyrometer
operation

Thermo-

Pyrometer

I
Thermocouple ;

Pyrometer

|
|

to growth
temperature

<

|
|
|
|Change l
|
|
|
|

GaAs buffer

= layers

temperature

ol

Sample A1282
800

2000
Time (s)

3000 4000 5000

700

600

500

400

300

Temperature (°C)

200

100~

| | !

0

2000

3000 4000 5000
Time (s)

Final Comments

The files Genoutgas.cmd, Tsub.cmd, TsubXXX.cmd, and Pyroc.cmd are all
stored in C:\u\mbe\. This allows the use of the file name only (without the
explicit path name) in the growth recipe. As mentioned above, the global
parameters are created in C:\molly\lib\local.cmd.

The parameters that are coded into the script files all have comments next
to their declarations. It should be fairly obvious from the script listings what
the parameters represent. Some optimization has been done and the present
values do work. However, further optimization can probably be done and
certainly refinements are possible. In particular, I am planning to allow a
step change in temperature if the difference between the old and new set
points is below a certain value. Once I am satisfied that the outgassing rou-
tine works perfectly for both InP and GaAs, I will probably create separate
files so that the operator does not have to edit the parameter SubToday.

Acknowledgment

I used the PID controller, coded and optimized by Rich Leavitt.

Appendix. Command File Listings

PHEMT8.wb1l
Genoutgas.cmd
Stdlogl.cmd
Pyroc.cmd
Tsub.cmd
Tsub550.cmd
Kill_pyr.cmd
Kill_log.cmd

Molly spreadsheet recipe for a PHEMT

General outgassing procedure for GaAs and InP
Starts the standard logging procedure

Launches Tsub.cmd

General PID controller for MBE growth
Changes the pyrometer set point to 550 °C
Terminates Tsub.cmd

Terminates the data logging

PHEMTS8.wb1

Appendix

81+300'%

8624 [eT

L
862t |ee
Fr o TANN
I
3
3

ejer1g Jpeow Budog (v) uyayy

414355
SL+300Z

NWNT0D §IHL 13130 L.NOAQ
NWNIOO SIHL L3130 L.INOQ

002

se

ooz o

2K XX X XK XK X X X XX X XK X

ajqeisep - umop dweu sj|8)
yimosn
9|qelie A - qosap apixo ony
giwayd 000z-INP-H2

29€'6S UIn+
] IH
9E'Ss uu
eLieee 08s
pwoBoy peo| Boj~doig
000 osned s||80"umop~dwey
oog 269'v921 00°00€ asned qgns| dwey sy 8S0|D
pwo’Lsog peo| peo| o) Jojem uIng
puwiorgiod peo| uolejos o um |
00°00€ esned qgns|~umop dwey
¥ peo| o~ oiAd"doig
X X mosb depTsyen
005 GSEOVEL 00008 esned dures~dn™Ig
X X X 91'€g moib doj syeg|v
X o08'25€ asned asing 19
X X 98'€} Mmosb 1a0edgTSYeD)|Y
X X 06'5P Mmoib jeuUBYD SYEDU)
X oocst moib 0005 18Ny sven
X PWO00SANS L peo) dwei"Jeyng sven
002 2691921 X 000291 moib 0009 1e)ing”sven
puio00iAd peo| " JjuodToIAd pRIg
pwoBinousy peo| quosaQ
pwogloy peo| uogejos—uoTwn |
pwo L Bolpis peo| Bol"lelg

+{Q3UOD 1810 YUM . JNTH
" i Snewog’
(uw/Bep) sjesdwel 1S xey 005 2dun umoQq

dusi umoQ

€20 i GSE'9YEL BL+3IY
£20 ' 169Y92h LI+35'S
oey Blop ynw e IS1 an uw[76] esnedig
86/62/} €212y [_0_Jiooo1ieo
[l692c_JSisee- [5] [L] sepx0
elqeL
ooy @LLE =
: Afetiduisaery
HILINVHVYL G3INWVYHS 1103 i L

Genoutgas.cmd

/**/

Appendix

/*******************************'k*******************-k***********************************/

/-k
/*
/*
/*
/*
/*

GaAs oxr InP

Stefan Svensson, ARL Mar 9,

This command file desorbs the oxide from an substrate which can be either
(not tested yet)
Temperature control via pyrometer and PID routine from Rich Leavitt

2000

*/
*/
*/
*/
*/
*/

/**********************************-k**/

/**/

#include
#include
#include
#include
#include
#include
#include
#include

/**/

/*
/**/
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
‘double
double
double
double
double
double
double
double
double
double
double

<stdlib.h>
<signal.h>
<unistd.h>
<cells.h>

<gauges.h>

<time.h>
<mbe . h>

TC_work-

/
/
—/

<shutters.h>

Ramp_timel

Wait_timel

Substrate;
GaAs

InP
SubToday
TPoutgasInP
TPoutgasGaAs
TPoutgas;
TP_growInP
TP_growGaAs
TP_grow;
TPdelta;
TPlast;
TPsub;

TPO;

TPwork
TPstep;
TCsub;
TC_work;
TC_workGaAs
TC_workInP
TC_test
Ramp_rate;
Ramp_timel
Ramp_time2
Ramp_time3
Wait_timel;
Wait_time2
Wait_time3

|--1

Ramp_time2

Ramp_time3

outg_time

| Pyro reading starts

1;
0;
1;
550.0;
630.

525.
600.

440.

650.
500.0;
450.

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Substrate flag

GaAs

InP

Today's substtate

Pyrometer Max outgassing temp InP

Pyrometer Max outgassing temp GaAs

Pyrometer Max outgassing temp General
Pyrometer Growth temperature InP

Pyrometer Growth temperature GaAs

Pyrometer Growth temperature General

Pyrometer Difference between last two readings
Pyrometer Previous reading

Pyrometer general substrate temperature
Pyrometer reading at start of PID control ramp
Pyrometer min real temperature

Pyrometer step length in PID control ramp
Thermocouple general substrate temperature
Thermocouple Min operating temp (first ramp target)
Thermocouple Min operating temp Gaas

Thermocouple Min operating temp InP

Thermocouple start testing for pyrometer operation
Thermocouple Ramp rate

Minutes ramp time to temp where pyrometer works
Minutes ramp time to outgassing temp

Minutes ramp time to growth temp

Minutes to wait for pyrometer to start working
Minutes to wait between pyrometer readings
Minutes extra wait before pyrometer control

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Appendix

double Outg time = 10.0;
double Time_ step;

double Numb_steps

int i;
int I_pyro

double
t0,
control_time,
Tstep = 1,
sigma,
delta,
Prop = 72,
Integ = 4.7,
Deriv = 1.35,
Tmin = 25,
Tmax = 850,
errtot=0,
TCsetp,
oldT,
newT,

curr_err,
prev_err;
string sznewT, szct;

/**/

if (SubToday ==

TPoutgas =
TP_grow =
TC_work =

if (SubToday ==
{
TPoutgas =
TP_grow =
TC work =
}
echo (% TPoutgas
echo (" TP_grow
echo (" TC_work
/**/

L}

—
o
(=}

/* Minutes outgas time

/* Time step length in ramp

/* Number of steps that ramp is broken into
/* Counter for pyrometer readings

/* Number of pyrometer readings to average

Genoutgas.cmd

*/
*/
*/
*/
*/

GaAs)

TPoutgasGaAs;
TP_growGaAs;
TC_workGaAs;

InP)

TPoutgasInP;
TP_growInP;
TC_workInP;

= “,TPoutgas) ;
= “,TP_grow) ;
= “,TC_work) ;

Initialize parameters for the right substrate

== Ramp substrate to the range where
== the pyrometer starts working

/*==============s=======ss=====z—-—==-=s==-——=-===s=sSS======sssc==c——-cscsmoc—smm—m—m——o==
/**/

while(TCsub <= 0.0) TCsub = temp(subs); /* Read current TC set point */
Ramp_rate = fabs{ (TC_work - TCsub)/Ramp_timel);

set_ramp{ subs ,Ramp_rate); /* Ramp thermocouple */
set_temp(subs ,TC_work) ; /* to temp where pyro works */
echo(“");

echo (* Ramping substrate to pyrometer range (Thermo-couple= “,TC_work,”)");

echo(" This will take “,Ramp_timel,” min.”)

echo (“") ; /* Wait until ramp is done *x/
echo(" Waiting for substrate to thermalize and pyrometer to start working “);

Wait_timel =
sleep (Wait_ti
/*

10

Ramp_timel*1.1;

mel*60) ;

/* Start checking pyro just before*/

ramp finsihes

*/

Genoutgas.cmd Appendix

- Start testing for pyrometer operation

echo (™ Looking for pyrometer stability “);

TbPdelta = -1.0; /* initialize */
TPlast = 1000.0; /* Search for positive TPdelta */
TCsub = 0.0; .
TPsub = 0.0;
while (TPdelta <0.0 || TPsub < TPwork)

{

i=0;

TPsub = 0.0;
while (i < I_pyro)

{

i=i+1;
TPsub = TPsub + reading(pyrometer);
/* echo(™ i, TPsub =”,i,TPsub); */
sleep(0.5);
}
TPsub = TPsub/I_pyro;
Tpdelta = TPsub - TPlast;
TPlast = TPsub;
/* echo (" TPsub, TPdelta = “, TPsub, TPdelta); */
sleep (Wait_time2*60);
}
sleep (Wait_time3+*60); /* Wait an extra 30 sec (chicken!) */
/**/

Ramp to outgas temp

/**/

echo (* Starting pyrometer control and upramp”);
echo (*) ;

Time_step = Ramp_time2+*60.0/Numb_steps; /* Time per step in sec */
control_time = Time_step;

TPO = reading(pyrometer) ;

TPstep = (TPoutgas - TPO)/Numb_steps;
echo (* Current temperature = “,TPO);

/* echo(“control time = v, control_time) ; */
/* echo(“TPstep = “,TPstep); */
/* echo(“Tstep = “,Tstep); */
i = 0;

while (i < Numb_steps)
{
i i+1;
newT TpPstep*i + TPO;
echo (“New temp:” ,newT) ;
sigma = -setp(subs)*Integ*Prop/100;
prev_err = reading{pyrometer)-newT;
set_ramp (subs,1000) ;

]

0ldT = newT;
tm =t;
t0 = t;
while (t-t0 < control_time)
{
sleep(Tstep - (£t - tm));
curr_err = reading(pyrometer)-newT;
sigma = sigma+Tstep*curr_err;
errtot = errtot+Tstep*curr_err*curr_err;
delta = (curr_err-prev_err)/Tstep;
TCsetp = -(curr_err+sigma/Integ+de1ta*Deriv)*100/Prop;

if (TCsetp < Tmin) TCsetp = Tmin;
if (TCsetp > Tmax) TCsetp = Tmax;
set_temp(subs,TCsetp);

prev_err = Curr_err;

11

Appendix ‘ Genoutgas.cmd

tm = tm + Tstep;

echo (* Outgas temperature reached “);

echo (" Outgassing for *“, Outg time, “ min”);
/**/

control time = Outg_time*60.0;

newT = TPoutgas;
/* echo (“New temp:”,newT) ; */

sigma = -getp(subs)*Integ*Prop/100;

prev_err=reading (pyrometer) -newT;
set_ramp (subs, 1000) ;

oldT = newT;
tm = t;
t0 = t;

while (t-t0 < control_time)

{

sleep(Tstep - (t - tm));

curr_err = reading(pyrometer) -newT;

sigma = sigma+Tstep*curr_err;

errtot = errtot+Tstep*curr err*curr_err;

delta = (curr_err-prev_err)/Tstep;

TCsetp = - (curr_err+sigma/Integ+delta*Deriv)*100/Prop;

if (TCsetp < Tmin) TCsetp = Tmin;
if (TCsetp > Tmax) TCsetp = Tmax;
set_temp (subs, TCsetp) ;

prev_err = Curr_err;
tm = tm + Tstep;
tm = t;

}

(2 ;
echo (* Done outgassing “);
(* Starting “,Ramp_time3,” min down-ramp”) ;
echo (*7) ;
control time = Ramp_time3*60;

TPO = reading (pyrometer) ;
echo (“Current temperature = “,TPO);
newT = TP_grow;
echo ("New temp:”,newT) ;
sigma = -setp(subs)*Integ*Prop/100;

prev_err = reading(pyrometer) -newT;
set_ramp (subs, 1000) ;

oldTr = newT;
tm = t;
to = t;

while (t-t0 < control_time)

{
sleep(Tstep - (t - tm));
curr_err = reading(pyrometer)-newT;

sigma = sigma+Tstep*curr_err;

errtot = errtot+Tstep*curr_err*curr_err;

delta = (curr_err-prev_err)/Tstep;

TCsetp = - (curr_err+sigma/Integ+delta*Deriv)*100/Prop;

if (TCsetp < Tmin) TCsetp = Tmin;
if (TCsetp > Tmax) TCsetp = Tmax;

12

Genoutgas.cmd

set_temp (subs, TCsetp) ;
prev_err = Curr_err;
tm = tm + Tstep;

Appendix

/**/

Tsub_new = TP_grow;

echo (* Substrate outgassed and oxide desorbed “);

echo (* Ready for growth”);

13

Appendix
/**/
/% x/
/* This command procedure starts a data log of temperatures, */
/* shutter positions and the flux gauge during a growth. x/
/* The data is stored in the file */
/* C:/u/mbe/recipes/stefan/log data/outfile.dat */
/* */
/***********-k**/
log _id = logger(20.0, /* log every 20 seconds */

e,

‘temp (subs) ’,

‘temp (Ga) ',

‘temp (A13) ',

‘temp (Al4) ',

‘temp (In) ‘,

‘temp(Si) ',

‘temp (Be) ',

‘temp (Sb) ",

‘temp (As) ',

‘temp (As_valve)’,

‘is_open(Ga)’,

‘is_open(Al3)’,

‘is_open(Al4)’,

‘is_open(si)’,

‘is_open(Be) ',

‘is_open(Sb) ',

‘is_open(As)’,

‘reading (flux) ',

“e://u//mbe//recipes//stefan//log_data//outfile.dat”);
echo(“log_id = “,log_id);

3

4
‘is _open(In)’,

)

)

)

14

Stdlogl.cmd

Pyroc.cmd Ap.pendix

/**/
/***********'k****************-k-k***/
/* */
/* This command file starts the rometer control program Tsub.cmd */
19% prog
/* By launcing it instead of loading it, it will run in parallel with */
Y g g p

/* the rest of the growth. */
/* Stefan Svensson, ARL May 24 2000 */
/*******-k*********-k-k**-Ir************-k*************************1\'**************************/
/**/

[**/

pyro_id = nsh(“Tsub.cmd”); /* Process ID of the launch file */

echo (" Launched Tsub.cmd”);

15

Appendix Tsub.cmd

/**/

/*****;***/
/* */
/* This command file sets a new substrate temperature over a time interval of x/
/* 50000 seconds (in other words it runs until you kill it). */
/* New setpoints are entered by setting the global variable Tsub_new in an other */

b Y g g]

/* command file. Enter the line load Tsubxxx.cmd (where xxx is the temp) */
/* Temperature control via pyrometer and PID routine from Rich Leavitt */
/* */
/* Stefan Svensson, ARL Jun 09, 2000 */
/***/
/**/

#include <stdlib.h>
#include <signal.h>
#include <unistd.h>
#include <cells.h>
#include <gauges.h>
#include <shutters.h>
#include <time.h>
#include <mbe.h>

double recipe_time = 50000.0;/* Seconds total time the cmd file is running */
double t00; /* Seconds start time for cmd file */
double TPO; /* Pyrometer reading at start of PID control ramp */
double TPstep; /* Pyrometer step length in PID control ramp */
double TCsub; /* Thermocouple general substrate temperature */
double TC_test = 450.0; /* Thermocouple start testing for pyrometer operation */
double Ramp_rate = 40; /* Thermocouple Ramp rate (deg/min) */
double Time_step; /* Time step length in ramp */
double Numb_steps = 10.0; /* Number of steps that ramp is broken into x/
int i; /* Counter for pyrometer readings */
int I_pyro = 5; /* Number of pyrometer readings to average */
double newT; /* Pyrometer New temperature value used inside PID loop */
double tO; /* Seconds Start time for PID loop */
double control_time; /* Seconds duration of PID loop */
double Tstep = 1.0; /* Seconds walt time between PID steps */
double sigma; /* PID sigma */
double delta; /* PID delta */
double Prop = 72.0; /* PID prop constant */
double Integ = 4.7; /* PID integration constant */
double Deriv = 1.35; /* PID derivative constant */
double TCmin = 25.0; /* Thermocouple min allowed value */
double TCmax = 850.0; /* Thermocouple min allowed value */
double TCsetp; /* Thermocouple setpoint */
double errtot = 0.0; /* PID total exror - */
double curr_err; /* PID current error */
double prev_err; /* PID previous error */

t00 = t; /* Start time */
while (t-t00 < recipe_time)

{
/* echo (“First test line, Tsub_new = “,Tsub_new); */

if (Tsub_old != Tsub_new)

{

Tsub.cmd Appendix

echo(“ Starting pyrometer control to “,Tsub_new);
echo (\\II) ;

TPO = reading(pyrometer) ;
TPstep = (Tsub_new - TPO)/Numb_steps;
Time_step = fabs(TPstep) /Ramp_rate*60.0; /* Time per step in sec */
control_time = Time_step;
i = 0;
/* echo (* Current temperature = “,TP0); */
/**/
while (i < Numb_steps)
{
i = i+1;
newT = TPstep*i + TPO;
echo (“New temp:”,newT) ;
sigma = -setp(subs)*Integ*Prop/100;
prev_err = reading(pyrometer)-newT;
set_ramp (subs, 1000} ;
tm = t;
to = t;
while (t-t0 < control time)
{
sleep(Tstep - (t - tm));
curr_err = reading(pyrometer)-newT;
sigma = sigma+Tstep*curr_err;
errtot = errtot+Tstep*curr_err*curr_err;
delta = (curr_err-prev_err)/Tstep;
TCsetp = - (curr_err+sigma/Integ+delta*Deriv) *100/Prop;
if (TCsetp < TCmin) TCsetp = TCmin;
if (TCsetp > TCmax) TCsetp = TCmax;
set_temp (subs, TCsetp) ;
prev_err = Curr_err;
tm = tm + Tstep;
tm=t;
}
}
echo (“ New substrate temp reached *, newT);
Tsub_old = Tsub_new;
}
/* else */
/* { */

/* echo (™ Maintaining temp at =“,Tsub_new); */
/**/
control_time = 5.0; /* Control for 5 sec before */
newT = Tsub_new; /* testing for new Tsub */
/* echo (“New temp:”,newT) ; */
sigma = -setp(subs) *Integ*Prop/100;
prev_err = reading(pyrometer) -newT;
set_ramp (subs, 1000) ;
tm =t
to = t;
while (t-t0 < control_time)
{
sleep(Tstep - (t - tm));
curr_err = reading(pyrometer)-newT;
/% echo (*newT = “,newT); */
sigma = sigma+Tstep*curr_err;
errtot = errtot+Tstep*curr_err*curr_err;
delta = (curr_err-prev_err)/Tstep;
TCsetp = - (curr_err+sigma/Integ+delta*Deriv) *100/Prop;

if (TCsetp < TCmin) TCsetp = TCmin;

17

Appendix Tsub.cmd

if (TCsetp > TCmax) TCsetp = TCmax;
set_temp (subs, TCsetp) ;

prev_err = Curr_err;

tm tm + Tstep;

tm t;

}

n

18

Tsub550.cmd Appendix

* *
;**i**/
/* */
/* This command file sets the substrate temperature during growth */
/* Stefan Svensson, ARL Apr 21,2000 */
/***/
/**/

Tsub_new = 550;

tm = t;

echo (“Tsub_new= “,Tsub_new) ;

19

Appendix Kill_pyr.cmd

/**/
/***/
/* */
/* This command file kills the pyrometer control program Tsub.cmd */
/* */
/* Stefan Svensson, ARL May 24 2000 */
/***************************-k***/
/**/

/**/

#include <signal.h>

echo (“*pyro_id= “,pyro_id);

kill (pyro_id, SIGKILL) ;

echo (" Pyrometer control finished.”);

20

Kill_log.cmd

/**/

/*

/* This command procedure kills the data log

/* The data is stored in the file

/* C:/u/mbe/recipes/stefan/log_data/outfile.dat
/*

*/
*/
*/
*/
*/

-/****'k***/

#include <signal.h>

echo (“sigkill=", SIGKILL) ;
echo(“log_id=",log_id);
kill (log_id, SIGKILL) ;
(

Appendix

echo (" Stdlogl finished. Data is in c:\\u\\mbe\\recipes\\stefan\\log_data\\outfile.dat”);

21

Distribution

Admnstr

Defns Techl Info Ctr

Attn DTIC-OCP

8725 John J Kingman Rd Ste 0944
FT Belvoir VA 22060-6218

DARPA

Attn S Welby

3701 N Fairfax Dr
Arlington VA 22203-1714

Ofc of the Secy of Defns
Attn ODDRE (R&AT)

The Pentagon

Washington DC 20301-3080

Ofc of the Secy of Defns

Attn OUSD(A&T)/ODDR&E(R) RJ Trew
3080 Defense Pentagon

Washington DC 20301-7100

AMCOM MRDEC
Attn AMSMI-RD W C McCorkle
Redstone Arsenal AL 35898-5240

Dir for MANPRINT

Ofc of the Deputy Chief of Staff for Prsnnl
Attn] Hiller

The Pentagon Rm 2C733

Washington DC 20301-0300

SMC/CZA
2435 Vela Way Ste 1613
El Segundo CA 90245-5500

US Army ARDEC

Attn AMSTA-AR-TD M Fisette
Bldg 1

Picatinny Arsenal NJ 07806-5000

US Army Info Sys; Engrg Cmnd
Attn AMSEL-IE-TD F Jenia
FT Huachuca AZ 85613-5300

US Army Natick RDEC Acting Techl Dir
Attn SBCN-T P Brandler
Natick MA 01760-5002

US Army Simulation, Train, & Instrmntn
Cmnd

Attn AMSTI-CG M Macedonia

Attn] Stahl

12350 Research Parkway

Orlando FL 32826-3726

US Army Soldier & Biol Chem Cmnd Dir of
Rsrch & Techlgy Dirctrt

Attn SMCCR-RS I G Resnick

Aberdeen Proving Ground MD 21010-5423

US Army Tank-Automtv Cmnd Rsrch, Dev,
Engrg Ctr

Attn AMSTA-TR] Chapin

Warren MI 48397-5000

US Army Train & Doctrine Cmnd
Battle Lab Integration & Techl Dirctrt
Attn ATCD-B

FT Monroe VA 23651-5850

US Military Academy

Mathematical Sci Ctr of Excellence
Attn MADN-MATH MAJM Huber
Thayer Hall

West Point NY 10996-1786

Nav Surface Warfare Ctr

Attn Code B0O7] Pennella

17320 Dahlgren Rd Bldg 1470 Rm 1101
Dahlgren VA 22448-5100

Hicks & Associates Inc
Attn G Singley III

1710 Goodrich Dr Ste 1300
McLean VA 22102

Palisades Inst for Rsrch Sve Inc
Attn E Carr

1745 Jefferson Davis Hwy Ste 500
Arlington VA 22202-3402

Director

US Army Rsrch Ofc

Attn AMSRL-RO-D JCI Chang
Attn AMSRL-RO-EN W D Bach
PO Box 12211

Research Triangle Park NC 27709

&

23

Distribution (cont’d)

US Army Rsrch Lab US Army Rsrch Lab (cont’d)

Attn AMSRL-DD JM Miller Attn AMSRL-D DR Smith

Attn AMSRL-CI-AI-R Mail & Records Mgmt Attn AMSRL-SE-RL S Svensson (4 copies)
Attn AMSRL-CI-AP Techl Pub (3 copies) Adelphi MD 20783-1197

Attn AMSRL-CI-LL Techl Lib (3 copies)

24

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway. Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

October 2000

3. REPORT TYPE AND DATES COVERED

Final, January-june 2000

the Pyrometer During MBE Growth

a.mimeanosuetTie Procedure for Substrate Temperature Control Using

s.AuTHOR(s) Stefan Svensson

5. FUNDING NUMBERS

DA PR: AH%4
PE: 62705A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

Attn: AMSRL-SE-RL email: svensson@arl.army.mil
2800 Powder Mill Road

Adelphi, MD 20783-1197

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-MR-491

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
2800 Powder Mill Road
Adelphi, MD 20783-1197

10, SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

ARL PR: ONE6]2
AMS code: 622705.H9%4

12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release;
distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

once suitable temperatures have been determined.

Command procedures have been developed for the Army Research Laboratory molecular beam
epitaxy (MBE) computer control system that allow a user to automatically outgas and desorb the
oxide from substrates before growth, as well as set substrate temperatures based on pyrometer
readings during growths. These procedures allow completely unattended growth of structures

14. SUBJECTTERMS MBE, computer control, pyrometer

15. NUMBER OF PAGES
28

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTﬁACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANS! Std. 239-18
298-102

25

